Networked forms of organizing (Baker, 1992; Miles & Snow, 1986) are a vital component to organizational survival. Especially in volatile contexts, from disaster recovery to emerging democracies, where multiple organizations partner to cope with intractable problems, building capacity in interorganizational networks is seen as evidence of an emerging stability (Doerfel et al., 2010) and civil society (Taylor & Doerfel, 2011). While organizations network for their own survival, the aggregate networks that evolve as a result of organizations’ self-interest also contribute to building capacity and resilience in their larger communities.

Social network theory has shown that, while the goals associated with building and maintaining these networks evolve, so too, does the structure of interorganizational relationships that work together to support them. This presentation theorizes about networked forms of organizing to critically examine what resilience looks like and what resilience could imply for both theory and policy considerations. Empirical research from several contexts, including post-civil war Croatia, post-Hurricane Katrina New Orleans, the Afghanistan media sector, and post-Superstorm Sandy New Jersey, are used to challenge assumptions about what such capacity building involves. Theory and policy considerations include strategies for community interventions and resource distribution in developing civil society, disaster preparedness for organizations and their communities, and implications regarding the properties that these seemingly different contexts have in common.

Marya L. Doerfel is an associate professor in the School of Communication and Information at Rutgers, The State University of New Jersey. Her research focuses on interorganizational networks, with a particular interest in disruptions. She has conducted communication and network research in areas where environmental conditions disrupted interorganizational alliances or when such alliances impact the transformation of broader system conditions.